

Mark Scheme (Results)

November 2020

Pearson Edexcel International GCSE Mathematics A (4MA1) Paper 1F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2020
Publications Code 4MA1_1F_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)

- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

· With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from questions 20(a) (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method

Q	Working	Answer	Mark		Notes
1 (a)		Gabon	1	B1	
(b)		11 100	1	B1	accept -11 100
(c)		248 000	1	B1	
					Total 3 marks

2	(a)		100	1	B1	
	(b)		1 ³ / ₄ pictures	1	B1	
	(c)	$2\frac{1}{2} + 3\frac{1}{4} + 5 + 4\frac{1}{4} + '1\frac{3}{4}' (= 16\frac{3}{4}) \text{ oe or}$ $2\frac{1}{2} \times 20 + 3\frac{1}{4} \times 20 + 5 \times 20 + 4\frac{1}{4} \times 20 + 35 (= 335)$ or $50 + 65 + 100 + 85 + 35 (= 335)$		3	M1	ft from (b) for adding up the number of squares or finding the total number of books – allow one error or omission
		$500 - 16\frac{3}{4}$ × 20 oe or $500 - 335$			M1	ft
			165		A1	
						Total 5 marks

3	(a)		cylinder	1	B1
	(b)(i)		6	1	B1
	(b)(ii)		8	1	B1
	(c)	$20 \times 8 \times 11$		2	M1
			1760		A1
					Total 5 marks

4 (a)	pentagon	1	B1	
(b)	85	1	B1	for 83 – 87
(c)	parallel sides	1	B1	No additional sides marked
	marked			
(d)	No with reason	1	B1	No and, for example, $12 \div 4 = 3$
				but 5 ÷ 3 does not equal 3
				Total 4 marks

5	20 – 2.35 (=17.65)		3	M1
	'17.65' ÷ 0.74 (= 23.8) or 24			M1 A clear attempt to subtract 0.74 23 times
		23		A1
				Total 3 marks

6 ((a)	E.g. $\frac{6}{10}$, $\frac{9}{15}$, $\frac{12}{20}$, $\frac{15}{25}$, $\frac{18}{30}$, $\frac{21}{35}$		2	M1	for any fraction equivalent to $\frac{24}{40}$ with denominator less than 40
			$\frac{3}{5}$		A1	
((b)		0.2	1	B1	
	(c)		$\frac{3}{10}$ oe	1	B1	
	(d)	$\frac{9n}{24n} + \frac{1n}{24n} \text{ or } \frac{9n+1n}{24n}$		2	M1	for correct fractions with a common denominator (multiple of 24)
		$eg \frac{10}{24} = \frac{5}{12}$	Shown		A1	for a multiple of $\frac{10n}{24n} = \frac{5}{12}$
((e)	$\frac{1}{2} \times 280 \ (= 140) \text{ oe or } \frac{2}{5} \times 280 \ (= 112) \text{ oe}$		3	M1	
		280 - '140' - '112'			M1	
			28		A1	
		Alternative method				
		$\frac{1}{2} + \frac{2}{5} \left(= \frac{9}{10} \right)$ or $0.5 + 0.4 (= 0.9)$ oe		3	M1	
		$\left(1 - \frac{9}{10}\right) \times 280 \text{ or } (1 - 6.9) \times 280 \text{ oe}$			M1	
			28		A1	
						Total 9 marks

7 (a)	5cd	1	B1
(b)	7	1	B1
(c)	4	1	B1
(d)	6k + 11m	2	B2 If not B2 then award
			B1 for 6 <i>k</i> or 11 <i>m</i>
(e)	12g + 4	1	B1
			Total 6 marks

8			Europe	Africa	Asia	Total	B4	for all 12 correct values. If not B4 then award
	N	Male	10	3	16	29		
	F	Female	14	6	11	31		(B3 for 9 or 10 or 11 correct values)
			24	9	27	60		(B2 for 6 or 7 or 8 correct values)
								(B1 for 4 or 5 correct values)
								Total 4 marks

9 (a)	$3 \times 4 + 2 \times 7$ or $12 + 14$		2	M1	
		26		A1	
(b)	$2 \times (-6)^2 + 3 \times -2$ or $72 - 6$		2	M1	
	or $2 \times -6 \times -6 + 3 \times -2$				
		66		A1	
(c)		T = 6g + 12h	3	В3	for $T = 6g + 12h$ oe
					(B2 for $6g + 12h$ oe or $T = 6g + ah$ or $T = bg + 12h$ or $T = 12g + 6h$ oe) (B1 for $6g + ah$ or $bg + 12h$ or $12g + 6h$ or for an incorrect expression in g and h eg $T = g + h$)
					Total 7 marks

10 (a)	88.96		2	M1 for	r 88.96 or 7.48 or for an
	7.48			an	swer of 11.9 or better
		11.88778		A1 11	.88778(004)
(b)		12	1	B1 ft	provided (a) has at least 3 sig
				fig	gs.
					Total 3 marks

11	$2 \times \pi \times 18$ or $\pi \times 36$		2	M1
		113		A1 for 113 – 113.15
				Total 2 marks

12	E.g.		4	M1	for converting £ to \$ or \$ to £
	$(72 \div 3) \times 1.34 (= 17.91)$ or				
	$34.5 \times 1.34 (= 46.23)$ or				
	72 ÷ 1.34 (= 53.73) or				
	$(34.5 \times 3) \times 1.34 (= 138.69)$				
	34.5 – '17.91' (= 16.59) or			M1	for profit of 1 pair of jeans or 3
	$(46.23^{\circ} - (72 \div 3) = (22.23) \text{ or }$				pairs of jeans
	$(34.5 \times 3) - 53.73$ (= 49.77) or				
	'138.69' – 72 (= 66.69)				
	$\frac{16.59}{17.91} \times 100 \text{ or } \frac{22.23}{72 \div 3} \times 100 \text{ or}$			M1	for a complete method
	$\frac{1}{17.91} \times 100 \text{ or } \frac{72 \div 3}{72 \div 3} \times 100 \text{ or } \frac{1}{100} \times 100 $				
	$\frac{49.77}{53.73} \times 100 \text{ or } \frac{66.69}{72} \times 100$				
	$\frac{1}{53.73}$ × 100 or $\frac{1}{72}$ × 100				
		93		A1	for 92.625 – 93
					Total 4 marks

13 (a)	(3,5) (5,5) (5,5)) 2 B2 If no	ot B2 then award
		[(1,- or f	For a reflection in $x = 2$ (-1)(-1,-1)(-1,-4)] or correct shape in the correct entation
(b)		tran flipp	ntion (with none of reflection, slation, enlargement, mirrored, bed or moved right, left, down etc) stated)
		B1 (cen	tre) (0,0) or origin (O) (award o vector or equation of line or mentioned)
	Rotation of 90 anticlockwise at (0,0)		anticlockwise 70° clockwise
			Total 5 marks

14 (a)	2, 4, 6, 12	1	B1
(b)	5, 7, 8, 9, 10, 11, 13, 14	1	B1
(c)		2	M1 for $\frac{a}{14}$ with $a < 14$ or $\frac{3}{b}$ with $b > 3$ or for 3 and 14 used with incorrect notation e.g. $3:14$
	$\frac{3}{14}$		A1 for $\frac{3}{14}$ oe or 0.214()
			Total 4 marks

15	$15 \times 60 \times 60 \ (= 54\ 000) \text{ oe or}$ $\frac{60}{12} \times 60 \times 15 \ (= 4500) \text{ oe or}$ $5 \times \frac{60}{12} \times 60 \ (= 1500) \text{ oe}$		4	M1	M2 for $\frac{15 \times 60 \times 60 \times 5}{12}$ (= 22 500)
	'54000' ÷ 12 × 5 (= 22 500) oe or '4500' × 5 (= 22 500) oe or '1500' × 15 (=22 500) oe			M1	
	'22 500' × 0.002 oe			M1 dep o	on M2 for a complete method
		45		A1	
					Total 4 marks

16	x -2 -1 0 1 2 3	Correct line between	3	В3	for a correct line between
	y 15 11 7 3 -1 -5	x = -2			x = -2 and $x = 3$
		and			
		x = 3			(B2 for a correct straight line segment through at
					least 3 of $(-2, 15)$ $(-1, 11)$ $(0, 7)$ $(1, 3)$ $(2, -1)$
	(-2, 15) (-1, 11) (0, 7) (1, 3)				(3, -5)
	(2,-1)(3,-5)				
					or
					for all of (-2, 15) (-1, 11) (0, 7) (1, 3) (2, -1)
					(3, -5) plotted but not joined)
					(D1 6 11 12 11 11 11 11 11 11 11 11 11 11 11
					(B1 for at least 2 correct points stated (may be in a
					table) or plotted or for a line drawn with a
					negative gradient through $(0, 7)$ or for a line with a gradient of -4)
					gradient or +)
					Total 3 marks

17	$\frac{x+10}{2} = 9$ or $x = 8$		4	M1 (indep)
	$\frac{4+7+x+10+y+y}{6} = 11 \text{ oe or}$ $66'-4-7-10 (= 45)$			M1 where x may be a number $7 < x < 10$
	$(y =) (6 \times 11 - 4 - 7 - 10 - `8') \div 2$			M1 ft their ft their value of x provided $7 < x < 10$ for a fully correct method
		x = 8 and y = 18.5 oe		A1
				Total 4 marks

18 (a)		0.0057	1	B1	
(b)		8×10^{5}	1	B1	
(c)	273000		2	M1	for 273 000 or digits 455
	6×10^{-2}				
		4 550 000		A1	for 4 550 000 or 4.55×10^6 oe
					Total 4 marks

19	$100 \div 28\ 440\ (= 0.0035)$ or $28\ 440 \div (60 \times 60)\ (= 7.9)$		3	M1
	'0.0035' × 60 × 60 or 100 ÷ '7.9'			M1
		13		A1 for 12.65 – 13
				Total 3 marks

20 (a)	20-5x = (7-3x)		3	M1	for expansion of bracket
. ,	E.g. $20 - 7 = -3x + 5x$ or			M1	ft from a 4-term equation
	-5x + 3x = 7 - 20				for a correct process of isolating
					terms in <i>x</i> on one side of the
					equation and numbers on the other
					side
		6.5 oe		A1	dep on M2 awarded
(b)			2	M1	for any correct partial
					factorisation with at least 2
					factors, one of which must be a
					letter or the correct common
					factor with no more than 1 error
					inside the bracket
		$8m^2g^3(2m+3g^2)$		A1	
(c)(i)	$(y\pm6)(y\pm8)$		2	M1	
		(y-8)(y+6)		A1	
(c)(ii)		8, -6	1	B1	must ft from their factors in (c)(i)
					Total 8 marks

21	$(10-2) \times 180$ oe (= 1440) or $(6-2) \times 180$ oe (= 720)		4	M1	for a method to find the sum of the interior angles of a decagon or a hexagon
	'1440' - 148 - 2×150 - 2×168 - 2×134 - 2×125 (=138) or '1440' - 1302 (= 138) or '720' - 148÷2 - 150 - 168 - 134 - 125 (= 69) or '720' - 651 (= 69)			M1	Allow omission of one angle
	360 - '138' or 360 - 2 × '69'			M1	
		222		A1	
	Alternative method (exterior angles)				
	$360 - 2 \times (180 - 125) - 2 \times (180 - 134) - 2 \times (180 - 168) - 2 \times (180 - 150) - (180 - 148)$ or $360 - 2 \times 55 - 2 \times 46 - 2 \times 12 - 2 \times 30 - 32$		4	M2	If not M2 then award M1 for at least 3 or (180 – 125), (180 – 134), (180 – 168), (180 – 150), (180 – 148) or at least 3 of 55, 46, 12, 30, 32
	180 + '42'			M1	
		222		A1	
					Total 4 marks

22	E.g. $1 - 0.2 = 0.8$ or $100(\%) - 20(\%) = 80(\%)$ or $\frac{1080}{80} = 13.5$ oe		3	M1
	E.g. 1080 ÷ 0.8 or 1080 ÷ 80 × 100 or '13.5' × 100 1080 × 100 ÷ 80			M1 for a complete method
		1350		A1
				Total 3 marks

23	(a)		2×3^{37}	1	B1
	(b)	$2 \times 3^{43} \times 2^4 \times 3^{37}$ or $2^5 \times 3^p \ (p \neq 80)$ or $2^q \times 3^{80} \ (q \neq 5)$		2	M1
		$2^5 \times 3^p \ (p \neq 80) \ \mathbf{or}$			
		$2^q \times 3^{80} \ (q \neq 5)$			
			$2^5 \times 3^{80}$		A1
					Total 3 marks